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WHAT IS SPECIAL ABOUT  
PARTICULATE SYSTEMS?

• There is no theory (or perhaps there 
are too many!)

• We do not understand how stresses 
develop and  propagate through 
particulate systems

• Therefore we do not know how 
to build good silos! 

• To understand better how forces and 
stresses develop consider simple 
systems and simple geometries



INTERACTION NETWORKS: EXPERIMENTS 

• Experiments with photoelastic 
discs

• Colors show the forces which 
particles experience

• Note extreme nonuniformity of 
force field

• Behavior very different from 
`usual' materials

Behringer’s lab, Duke



EXPERIMENT

• Is there a connection /between force networks and slider dynamics?

(from Zadeh, Bares, 
Behringer, PRE 2019)



INTERACTION NETWORKS: EXPERIMENTS

(Kozlowski etal, PRE 2019)



FORCE NETWORKS IN EXPERIMENTS 
(BEHRINGER’S LAB)



FORCE NETWORKS IN SIMULATIONS
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INTERACTION NETWORKS IN 3D



QUESTIONS

• How to quantify (and simplify) the information contained in the interaction 
networks?

• How to correlate the evolution of force networks (mesoscale) to the 
evolution of the system as a whole (macro scale)?

• And in general: How to characterize temporal evolution of complex 
networks in materials systems?   [Note similar structures existing in a 
number of other systems such as: suspensions, gells, glassy systems, soft 
solids] 



OVERVIEW I

• General approach: use the computational topology to help understand 
complex spatio-temporal dynamics of particulate based systems

• Outcome: data reduction, inspired by physics of the considered systems, 
allowing to proceed from huge amount of data to tractable data sets 

• Methods: discrete element/MD simulations coordinated with analysis 
based on computational topology; extraction of quantities that could be 
used as input to machine learning algorithms



PERSISTENT HOMOLOGY: OVERVIEW 

• Use topology based approach to carry out data reduction: from large 
time dependent data sets to simpler well-defined mathematical 
structures

• Important point: the resulting mathematical structures still contain the 
most important physics of the considered systems and therefore their 
analysis allows to reach new insights into the physical properties of the 
considered systems

•  Kramar, Goullet, LK, Mischaikow,  PRE 2013; PRE 2014; Physica D 2014 



PERSISTENT HOMOLOGY: FEATURES
• Force threshold independent: provides information about all thresholds at 

once

• Applicable equally well in 2D and 3D

• It can be applied to systems containing particles of arbitrary shapes

• Works for both experimental and simulation data

• Basic idea: strength of the interaction between particles is crucial: filtering 
force networks by varying force thresholding provides

•  important information about the system across all thresholds

•  the means for analysis of spatial and temporal properties of the force 
networks



DISCRETE ELEMENT MODELS 
• Level of complexity of interaction models

• spherical, elastic, frictionless particles interacting infinitely fast only when in contact

• relatively easy to implement, can be connected to continuum fluid-mechanics like theories

• certain part of physics is lost...

• spherical particles with inelasticity and friction interacting with repulsive or attractive 
interactions when in contact

• relatively easy to implement

• typically use relatively simple force interaction laws

• More complex approaches:

• resolving details of individual contacts (linear/nonlinear elasticity theory) (see Johnson, 
Contact Mechanics)

• aspherical particles

• long range interactions

• ...



MD/DISCRETE ELEMENT 
SIMULATIONS
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PERSISTENT HOMOLOGY: 1D TOY EXAMPLE 
• Homology: way to associate algebraic objects to topological spaces

• Persistent homology: a method of computing topological features at different 
spatial scales; in the context of granular matter, the word `persistence’ is meant 
in terms of inter-particle forces: over which range of forces certain topological 
feature (chain, loop) persists?
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• persistence: tool for measuring topological features
• persistence diagram: indicates for which value of the function a 

given feature appears and disappears (merges)
• the diagram consists of points given by (birth, death) of 

generators (features)

PERSISTENCE DIAGRAMS: 2D TOY EXAMPLE 

From a complicated function to point clouds



PARTICLE TOY EXAMPLE

simple force network with 
force strength illustrated by 

numerical values

PD 0 (`chains’) PD 1 (loops)

From weighted network to point clouds



PERSISTENT HOMOLOGY: MEASURES 
• PDs describe complex weighted network in terms of point clouds 

• Further data reduction: 

• Static information: compress point cloud to one number: Total Persistence, sum of all lifespans

• Dynamic information: compare PDs by defining difference between them (Wasserstein 
distance, W2) [describes the minimal rearrangement required to map one PD to another one; 
extra points mapped to the diagonal;  W2 uses L2 norm] 
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COUETTE SHEAR: EXPERIMENTS 
AND SIMULATIONS

• Idea: understand intermittent dynamics 
of a particle size intruder in a Couette 
shear cell 

• Motivation: Couette geometry allows 
for continuous shear and therefore a 
large amount of data could be collected

• Ongoing project: so far, detailed analysis 
of intruder dynamics has been carried 
out

• Next steps:  analysis of interaction 
networks in both experiments and 
simulations



ANALYSIS OF STICK-SLIP DYNAMICS, 
PART I 

• Experiments: careful study of the intruder dynamics
• Kozlowski, Carlevaro, Daniels, LK, Pugnaloni, Socolar, Zheng, Behringer, Phys. Rev. E 100, 

032905 (2019)

• Simulations: direct comparison to experiments
• Carlevaro, Kozlowski, Pugnaloni, Zheng, Socolar, LK, Phys. Rev. E 101, 012909 (2020)

• both experiments and simulations carried out with disks and pentagons



ANALYSIS OF STICK-SLIP DYNAMICS, 
PART II 

• Challenge: quantify statics and dynamics of force networks

• Use TDA: description of force networks via `persistence diagrams (PDs)’ 
-  point clouds that quantify connectivity of a weighted network

• PDs computed using the methods emerging from persistent homology, 
well established discipline of computational topology



PERSISTENT DIAGRAMS
• PDs: a method of computing topological features at different spatial 

scales; in the context of granular matter, the word `persistence’ is meant 
in terms of inter-particle forces: over which range of forces certain 
topological feature (chain, loop) persists?

• Important features of PDs

• significant data reduction: from terabytes to megabytes

• keep important information about connectivity of force networks

• computed using the same techniques and codes in 2D and 3D

• uses as input experimental images (obtained using photoelasticity or 
some other method) or simulation data

• live in a  metric space, meaning they could be compared: dynamics can 
be extracted

• applicable to any weighted network



PERSISTENT HOMOLOGY: APPLICATIONS TO GRANULAR SYSTEMS

Tadanaga, Clark, Majmudar, LK 
PRE 2018

compression - 
monodisperse  

frictionless

compression 
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Kramar, Goullet, LK, Mischaikow, Physica D 2014

Normal forces Tangential forces

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

0.0

0.6

1.2

1.8

2.4

3.0

3.6

4.2

4.8

5.4

Normal forces Tangential forces

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

0.0

0.8

1.6

2.4

3.2

4.0

4.8

5.6

Pugnaloni etal, LK etal PRE 2016

disks vs. pentagons: tapping

Shah, Cheng, Jalali, LK, Soft 
Matter 2020

pulling out an intruder suspensions

Singh, Gameiro, LK Mischaikow, Morris, 
PR Fluids 2020

impact (experiment)



INTERACTION NETWORKS IN SIMULATIONS:
TOTAL PERSISTENCE

• TP (total persistence) captures well the changes of force networks 
due to intruder’s dynamics, and shows significant difference between 
components (`chains’) and loops (`cycles’)

B : birth
D : death
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CASE STUDY: STICK SLIP DYNAMICS 

soft bidisperse frictional particles (2D disks)
shear imposed by a spring attached to the top wall
no gravity 



USE PERSISTENCE TO ANALYZE 
AVALANCHES: STICK - SLIP DYNAMICS

pressure applied
top wall pulled 

by a spring
xy

Is there a signature of upcoming 
slip event?



Single Slip Event - Wall Movement 



DISTANCE BETWEEN PERSISTENCE 
DIAGRAMS

• persistence diagrams live in a metric space and therefore can be 
compared

• approach: compute the distance between all points in a diagram, 
and match the points so that this distance is minimized
• (if the number of points is different, match the extra points to 

the diagonal)
• use appropriate norm to put desired weight on small or large 

differences
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Single Slip event Force Network

start of the slip event

some norm of the difference between 
consecutive PDs



Single Slip event Force Network



Single stick slip event

W2-distances between consecutive frames



Single Slip Event



STICK-SLIP: WHAT HAVE WE LEARNED
• Topology based methods provide a way to simplify considerably 

quantitative description of interaction networks in sheared granular 
systems

• Based on the simplified description, we are able to quantify the 
connection between mesoscale information (interaction networks) and 
macroscopic system response (slip)

• Interaction networks analysis suggests existence of precursors to slip 
events 

• Current work: 

• carry out analysis of a large number of slip events

• describe more precisely the slip precursors and their properties

• explore the use of machine learning to predict future events



MACHINE LEARNING (ML)

• Can we learn when a system is going to yield based on the state of the 
system while it is static?

• Relevance: huge!

• Idea: feed the data from simulations to ML software and ask what kind of 
information is needed to be able to develop predictions

• Ongoing project with the group led by Kramar at OU, using the 2D data 
produced here

• Future projects: use our data in 3D, as well as the experimental and 
simulation data produced by our collaborators



SUMMARY
• We are attempting to describe systems for which there is no continuum theory 

in terms of partial differential equations: this is not an easy task

• The methods based on analysis of force networks provide a path from micro to 
macro scale, allowing to connect particle properties to macroscopic system 
response (rheology, yielding, avalanching)

• Our results suggest that the force networks evolve even while the system is 
stuck: quantifying this evolution may be a key in developing predictive capabilities

• Preliminary results suggest that predicting upcoming slip events should be 
possible: the question is what type of information is needed for this purpose? 
subject of our current work
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